$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

PHYSICS
AS/Advanced

JANUARY 2014

INTRODUCTION

The marking schemes which follow were those used by WJEC for the January 2014. examination in GCE PHYSICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Page
PH1 1
PH2 6
PH3 10

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question} \& Marking details \& Marks Available \\
\hline 1 \& \begin{tabular}{l}
(a) \\
(b) \\
(c) \\
(d)
\end{tabular} \& \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
A quantity which has magnitude [accept size] and direction. \\
[Resultant] Force (1) \\
Acceleration (1) \\
(award 1 mark only if both symbols identified correctly)
\[
\begin{aligned}
\& 2 T(1) \times \cos 37^{\circ}(1) \quad[=8000 \mathrm{~N}] \\
\& F_{\mathrm{drag}}=6000[\mathrm{~N}] \\
\& F=6000 \mathrm{~N} \quad \text { (1) ecf from }(c)(\mathrm{ii}) \\
\& d=2.5 \times 60(1) \\
\& \begin{aligned}
W \& =6000 \times 2.5 \times 60 \\
\& =9 \times 10^{5} \mathrm{~J}
\end{aligned} \text { (1) UNIT mark }
\end{aligned}
\] \\
Question 1 total
\end{tabular} \& \begin{tabular}{l}
[1] \\
[2] \\
[2] \\
[1] \\
[3] \\
[9]
\end{tabular} \\
\hline 2 \& \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& (i)

(ii) \& \begin{tabular}{l}
n - number of free/conducting electrons (charge carriers) per unit volume (1) accept free electron density

v-drift velocity (1)

LHS: Cs^{-1} (1)

RHS: $\mathrm{m}^{-3} \mathrm{x} \mathrm{m}^{2} \mathrm{x} \mathrm{m}^{-1} \times \mathrm{C}$

Clear manipulation to show/state LHS $=$ RHS

$v=\frac{I}{n A e}$ (1) (or correct substitution)

$v=1.30 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-1}$ (1) (-1 for slips in powers of 10$)$

$t=\frac{5.0}{1.30 \times 10^{-4}}=3.85 \times 10^{4}[\mathrm{~s}]$ (1) ecf for incorrect value of v

Reduced CSA (or diameter) and n, e constant...... (1)

...Increased v...... (1)

.....Hence reduced t (1)

Question 2 total

 \&

[2]

[3]

[3]

[3]

[11]
\end{tabular}

\hline
\end{tabular}

© WJEC CBAC Ltd.

Question				Marking details	Marks Available
4	(a)		Metal wire at constant temperature - straight diagonal line. Filament of lamp - curved line. Straight line: R constant throughout [or V / I constant] as... (1)T constant throughout (1) Curve: Initially R constant [or V / I constant] as....(1) Then T increases (1) so R increases - accept explanation in terms of particles (1)		[1]
	(b)	(i) (ii)		$I=2[\mathrm{~A}]$	[1]
			(I)	Voltage across $\mathrm{X}=12[\mathrm{~V}]$	[1]
			(II)	$12 \mathrm{~V}-6 \mathrm{~V}=6[\mathrm{~V}]$ ecf from (I)	[1]
			(III)	$\begin{equation*} R_{2}=\frac{6}{4}=1.5[\Omega] \text { ecf from (II) } \tag{1} \end{equation*}$	[1]
			(IV)	V across $R_{1}=3[\mathrm{~V}]$ I through $R_{1}=6[\mathrm{~A}]$ $\begin{equation*} R_{1}=\frac{3}{6}(\text { ecf on } I \text { and } / \text { or } V)=0.5[\Omega] \tag{1} \end{equation*}$	[3]
				Question 4 Total	[13]

Question			Marking details	Marks Available
5	(a) (b)	(i) (ii) (iii)	$\begin{equation*} R=\frac{\rho \ell}{A} \tag{1} \end{equation*}$ ρ constant (1) Effect of change in l and A on $R(1)$ $\begin{align*} & \text { CSA }=2.4 \times 10^{-10} \mathrm{~m}^{2} \\ & l=6 \times 3.2 \times 10^{-2} \mathrm{~m} \quad(=0.192 \mathrm{~m}) \tag{1} \end{align*}$ Correct substitution into $R=\frac{\rho \ell}{A}$ to show $R=56[\Omega]$ $\begin{align*} & \begin{array}{l} 0.1 \% \times 56=0.056 \Omega \\ \Delta l=1.9 \times 10^{-4}[\mathrm{~m}] \quad(\text { ecf }) \end{array} \tag{1} \end{align*}$ Zig-zag pattern ensures long length of wire Therefore maximise Δl (or maximise ΔR - or equivalent) or measure strain in a small region (1) Question 5 Total	[3] [3] [2] [2] [10]
6	(a) (b)	(i) (ii) (iii)	No net force (1) No net moment (1) Downward pointing arrow placed in (approximate) centre of beam Clockwise: $(10 \times 1.5)+(20 \times 3)(1)$ Anti-clockwise: 40 d (1) $d=1.875[\mathrm{~m}]$ 10 [N] (1) Downwards (1) Question 6 Total	[2] [1] [3] [2] [8]

Question				Marking details	Marks Available
7	(a)			Mass of air $=\rho A u(1)$ Convincing substitution into $1 / 2 m u^{2}$ (1)	[2]
		(ii)	$\begin{aligned} & \text { (I) } \\ & \text { (II) } \end{aligned}$		[2]
		(iii)		$1 / 2 A \rho\left(u^{3}-v^{3}\right)$ (or equivalent)	[1]
		(iv)		Turbines in front will have removed energy from the wind - or equivalent	[1]
		(v)		Substitution into $1 / 2 A \rho\left(u^{3}-v^{3}\right)$ (or equivalent) (1) $P=1644$ [W] (1) (-1 mark for error in A)	[2]
	(b)	(i)(ii)		Energy passing through blades insufficient to overcome friction of moving parts.	[1]
				$\begin{align*} & \text { Efficiency }=54 \% \pm 1 \% \\ & P=888 \text { W }(\text { ecf from }(a)(\mathrm{v})) \text { UNIT mark } \tag{1} \end{align*}$	[2]
	(c)			Density of water much greater than density of air	[1]
				Question 7 Total	[12]

Question			Marking details	Marks Available
1	(a) (b) (c) (d) (e)		$\begin{align*} & 0.40[\mathrm{~m}] \\ & v=\frac{0.050}{0.10}, \frac{0.450}{0.10} \text { etc or }\left(\frac{1}{0.8}\right) \mathrm{x} 0.4 \text { or by implication (1) } \\ & v=0.50,4.5 \text { etc }\left[\mathrm{m} \mathrm{~s}^{-1}\right] \tag{1} \end{align*}$ 1.25 Hz UNIT MARK [ecf on v and λ and T] same B lags A (1) by $1 / 4$ cycle $/ 90^{\circ} / \frac{\pi}{2}$ accept $\frac{T}{4}$ or $\frac{\lambda}{4}$	1 1 2
			Question 1 total	[7]
2	(a) (b) (c)	(i) (ii)	Direction of wave [or energy] travel and direction of [particle] displacements [or oscillations] are the same [or parallel]. diffraction No zeros (or waves spread right round) so $\lambda \geq 0.3 \mathrm{~m}$ $\lambda=0.9 \mathrm{~m}$ for 375 Hz or $\lambda=0.09 \mathrm{~m}$ for 3750 Hz or if $\lambda=0.3 \mathrm{~m}$ then $f=$ 1100 Hz (1) 375 Hz more likely with some supporting argument, e.g. the above, or even just "Longer wavelengths [or lower frequencies] spread more."] (1) $\begin{equation*} \lambda=140[\mathrm{~mm}] \tag{1} \end{equation*}$ Any 2 x (1): Interference occurs between [accept superposition of] waves travelling in opposite directions [accept waves from speaker and reflected waves] Board acts as reflector Stationary wave set up	1 3 3 3
			Question 2 total	[8]

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Question} \& Marking details \& Marks Available \\
\hline 3 \& (a) \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii) \\
(iv)
\end{tabular} \& \begin{tabular}{l}
(I) \\
(II)
\end{tabular} \& \begin{tabular}{l}
Same point in cycle at same time or equivalent
\[
\mathrm{S}_{2} \mathrm{P}-\mathrm{S}_{1} \mathrm{P} \text { or equivalent. [Accept } \mathrm{S}_{1} \mathrm{P}-\mathrm{S}_{2} \mathrm{P} \text {] }
\] \\
Path difference \(=36 \mathrm{~mm}\) (1) which is \(3 \lambda\), so constructive. (1) Award 1 mark only for : \(\mathrm{S}_{1} \mathrm{Q}=28 \lambda, \mathrm{~S}_{2} \mathrm{Q}=25 \lambda\) therefore arrive in phase so constructive interference \\
[Path difference doesn't change], so always constructive (1) but signal strength will decrease as we move further from sources. (1)
\[
\begin{align*}
\& y=\frac{12 \times 360}{36} \text { even if units inhomogeneous } \tag{1}\\
\& y=120 \mathrm{~mm} \text { UNIT }
\end{align*}
\] \\
correct insertion of 12 [mm] and 30 [mm] into grating equation or by implication (1) \\
\(24^{\circ}\) (1) \(53^{\circ}\) (1) award 1 mark if both angles wrong because of arithmetic error \\
Either \(0^{\circ}\) or \(\pm 24^{\circ}\) and \(\pm 53^{\circ}\) or equivalent.
\end{tabular} \& 2
2
2
2

4

\hline \& \& \& \& Question 3 total \& [12]

\hline 4 \& (a) \& | (i) |
| :--- |
| (ii) |
| (i) |
| (ii) |
| (iii) |
| (iv) | \& \& | incident ray and angle c marked and grazing refracted ray |
| :--- |
| $n_{1} \sin c=n_{2} \sin 90^{\circ} \quad$ (1) |
| $\sin 90^{\circ}=1$ or $n_{1} \sin c=n_{2}$ |
| $\sin c=\frac{x}{s}$ and c marked on diagram |
| convincing algebra |
| $v=2.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ [or by implication] |
| $t=6.00 \mu[\mathrm{~s}]$ [or $t=4.00 \mu \mathrm{~s}$, in which case first mark not gained] (1) |
| time via zigzag $=6.00 \mu \mathrm{~s} \times \frac{1.500}{1.485}[=6.06 \mu \mathrm{~s}]$ or $\frac{1212}{2 \times 10^{8}}$ |
| [ecf on $t=6.00 \mu \mathrm{~s}$ or by implication] |
| $\Delta t=0.06 \mu[\mathrm{~s}][\mathrm{ecf}$ on $6.00 \mu \mathrm{~s}$] (1) $\begin{equation*} \left[\frac{1}{6.00 \times 10^{-6}}\right]=17 \times 10^{6}\left[\mathrm{~s}^{-1}\right]\left[\operatorname{Accept}(18 \pm 2) \times 10^{6}\right] \tag{1} \end{equation*}$ |
| assumes negligible pulse duration [or assumes angles of incidence range from 0 to c or longest path is 1212 m] | \& 1

2
2
2
2
2
2
2

\hline \& \& \& \& Question 4 Total \& [11]

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Question} \& Marking details \& Marks Available

\hline 5 \& (a)

(b)

(c) \& \begin{tabular}{l}
(i)

(ii)

(iii)

(i)

(ii)

 \& \&

[minimum] energy needed to eject an electron from the metal [or surface or solid not atom]

$$
\begin{equation*}
6.9 \times 10^{14}[\mathrm{~Hz}] \tag{1}
\end{equation*}
$$

Photon energy not high enough [< work function]

Electrons can't escape

(1)

$f=\frac{\left(E_{k \max }+\phi\right)}{h}$ or correct transposition at any stage or by implic(1)

$$
\begin{equation*}
=1.0 \times 10^{15}[\mathrm{~Hz}] \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
3.2 \times 10^{-19}[\mathrm{~J}] \tag{1}
\end{equation*}
$$

This uses the higher energy [or the higher frequency] photons, or produces the higher energy electrons, or photons don't co-operate or equivalent

2.0 [V]ecf

 \&

1

2

2

2

1
\end{tabular}

\hline \& \& \& \& Question 5 Total \& [9]

\hline 6 \& (a) \& | (i) |
| :--- |
| (ii) |
| (iii) | \& | (I) |
| :--- |
| (II) | \& | $\begin{align*} & \lambda=\frac{h c}{\Delta E} \text { or }\left[\lambda=\frac{c}{f} \text { and } E=h f\right] \text { or } f=2.8 \times 10^{14}[\mathrm{~Hz}] \tag{1}\\ & \lambda=1.06 \times 10^{-6}[\mathrm{~m}](1) \tag{1} \end{align*}$ |
| :--- |
| $u p$ arrow from L to U |
| Photon's energy given to atom or electron (1) |
| [Incident] photon causes electron to drop from U to L . (1) Incident photon must have energy $E_{\mathrm{U}}-E_{\mathrm{L}}$ or equivalent (1) |
| Photon emitted so now 2 photons present; accept by implic from emitted photon in phase.(1) |
| Need more electrons in U than L. Accept: need pop'n inversion (1) |
| Electrons pumped to P and drop to U (1) |
| Electrons drop from L to ground [helping to keep L depopulated].(1) |
| Any 2 x (1): |
| monochromatic [or equivalent e.g. long wave-trains] |
| photons in phase (don't accept waves in phase) |
| light in phase (or wavefronts continuous) across width of beam | \& 2

2
2
3
3

3
2

\hline \& \& \& \& Question 6 Total \& [12]

\hline
\end{tabular}

Question				Marking details	Mark Available
7	(a) (b) (c)	(i) (ii) (iii)		$\lambda_{\text {peak }}=430 \mathrm{n}[\mathrm{m}][\pm 10 \mathrm{~nm}]$ (1) $T=6700[\mathrm{~K}]$ ecf on $\lambda_{\text {peak, }}$, provided it's not 1200 nm $T=5400[\mathrm{~K}][\pm 250 \mathrm{~K}]$ bluer or whiter at maximum T or redder at minimum T $A=\frac{P}{\sigma T^{4}}$ (transposition at any stage) or by implication (1) $A=\frac{1.46 \times 10^{30}}{5.76 \times 10^{-8} \times 6700^{4}}\left[=1.3 \times 10^{22} \mathrm{~m}^{2}\right]$ ecf on T use of $A=4 \pi r^{2}$ or $A=\pi d^{2} \quad$ (1) $d=6.4 \times 10^{10}[\mathrm{~m}] \quad$ ecf on T if value from (a)(i) used Slips of factors of 2 or 10 lose 1 mark each. $\begin{align*} & \left(\frac{P_{\min }}{P_{\max }}\right)=\left(\frac{T_{\min }}{T_{\max }}\right)^{4} \text { or } P_{\min }=6.2 \times 10^{29} \mathrm{~W} \text { ecf } \tag{1}\\ & \frac{P_{\min }}{P_{\max }}=0.42 \text { ecf } \quad \text { or } P_{\max }-P_{\min }=8.4 \times 10^{29} \mathrm{~W} \text { ecf } \\ & \left(\frac{P_{\max }-P_{\min }}{P_{\max }}\right)=0.58[\text { accept }]=58 \% \tag{1} \end{align*}$	2 1 1 4 3
				Question 7 Total	[11]
8	(a) (b)	(i) (ii) (iii) (iv)	(I) (II)	$+2,0 \quad$ (1) ūd, $-1,0 \quad$ (1) [blank], 0,1 [Accept 'none' instead of cell left blank.] Sun or stars e-m and γ or photon involvement In stage 1: $0+0$ goes to $0-1+1$ [or equivalent] (1) In stages 2 and 3, zeros throughout or equivalent (1) uud + uud goes to und + udd accept d: $2 \rightarrow 3$, u: $4 \rightarrow 3$ (1) A u is lost and ad is gained [or a u changes to a d]. (1) Neither involves weak force or equivalent e.g. only strong [and em] force involved.	3 1 1 2 2 1
				Question 8 Total	[10]

Question			Marking details	Marks Available
7	(a)	(i)\&(ii)	$\begin{equation*} T=2 \pi \sqrt{\frac{\left(1.4 \times 10^{19}\right)^{3}}{6.67 \times 10^{-11} \times\left(1.6 \times 10^{29}+3.7 \times 10^{27}\right)}} \tag{1} \end{equation*}$	
			$\text { Answer }=3.15 \times 10^{6}[\mathrm{~s}] \text { or implied }\left(3.19 \times 10^{6} \mathrm{~s} \text { if } M_{2} \text { omitted }\right)$ (1)	
			36.5 [days] (1) (36.9 if M_{2} omitted gets $2 / 3$)	
	(b)		$r_{1}=\frac{M_{2}}{M_{1}+M_{2}} d \quad$ used or $M_{1} r_{1}=M_{2} r_{2}$ used (1)	
			$\begin{aligned} & \text { Star orbit radius }=0.032 \times 10^{10}[\mathrm{~m}](1) \\ & \text { Planet orbit radius }=1.37 \times 10^{10}[\mathrm{~m}](1) \end{aligned}$	3
	(c)	(i)	$v=\frac{2 \pi r}{T} \quad$ or $\quad v=\omega r \quad$ and $\quad \omega=2 \pi f(1)$	
			$v=\frac{2 \pi \times 0.032 \times 10^{10}}{3.15 \times 10^{6}}(=631) \text { (1) ecf }$	2
		(ii)	$\frac{\Delta \lambda}{\lambda}=\frac{v}{c} \quad$ values substituted or not possible	
			Answer $=3.9[\mathrm{pm}]$ because mean radial speed unknown (1)	2
			Don't penalise using $2 \mathrm{x} v$ if explained	
			Question 7 Total	[10]

WJEC
$\frac{\text { WJEC }}{\text { CBAC }}$
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk
website: www.wjec.co.uk

